Count Up with the Four Fours Puzzle

For all your silly time-killing forum games.

Moderators: jestingrabbit, Moderators General, Prelates

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Count Up with the Four Fours Puzzle

In this thread we count up using the classic four fours puzzle: how high can we get with only four fours. You are allowed to use standard operations, square root, and any other operation you can think of (so long as it doesn't in't involve other numbers). We'll see how high we can go.

0 = 44-44
This is a signature, in case you didn't notice.

Current tokens: 66.562

emlightened
Posts: 36
Joined: Sat Sep 26, 2015 9:35 pm UTC
Location: Somewhere cosy.

Re: Count Up with the Four Fours Puzzle

Sure.

1 = !(!4-4)/44

!k is the subfactorial, and counts derangements. The first few values (k = 0, 1, 2...) are 1, 0, 1, 2, 9, 44, 265...
The Seven Wonders of the World:
To see
To hear
To touch
To taste
To feel
To laugh
And to love

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

2 = 4/4+4/4

I prefer just using single digit 4s with addition, subtraction, multiplication, division, and exponentiation.

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Re: Count Up with the Four Fours Puzzle

3 = (4+4+4)/4
This is a signature, in case you didn't notice.

Current tokens: 66.562

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

4 = 4 + 4*(4-4)

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Re: Count Up with the Four Fours Puzzle

5 = (4*4+4)/4
This is a signature, in case you didn't notice.

Current tokens: 66.562

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

6 = 4+(4+4)/4

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

7 = 4-4/4+4
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Re: Count Up with the Four Fours Puzzle

8 = 4*4-4-4
This is a signature, in case you didn't notice.

Current tokens: 66.562

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

9 = 4+4+4/4

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Re: Count Up with the Four Fours Puzzle

(44-4)/4 = 10
This is a signature, in case you didn't notice.

Current tokens: 66.562

emlightened
Posts: 36
Joined: Sat Sep 26, 2015 9:35 pm UTC
Location: Somewhere cosy.

Re: Count Up with the Four Fours Puzzle

I believe the only positive integers <100 we can make with the basic 5 operations and 4 4's (no concentration) are 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 28, 32, 36, 48, 60, 63, 64, 65, 68 and 81. A few more with sqrt, but not very much further.

11 = 44/√(4*4)
The Seven Wonders of the World:
To see
To hear
To touch
To taste
To feel
To laugh
And to love

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Re: Count Up with the Four Fours Puzzle

12 = 4*(4-4/4)
This is a signature, in case you didn't notice.

Current tokens: 66.562

emlightened
Posts: 36
Joined: Sat Sep 26, 2015 9:35 pm UTC
Location: Somewhere cosy.

Re: Count Up with the Four Fours Puzzle

13 = ((√4+√4)!+√4)/√4
The Seven Wonders of the World:
To see
To hear
To touch
To taste
To feel
To laugh
And to love

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

14 = ⌊((4!)/(∜(4+4)))⌋
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Re: Count Up with the Four Fours Puzzle

That's a fourth root and floor function, by the way.

15 = (44/4)+4
This is a signature, in case you didn't notice.

Current tokens: 66.562

emlightened
Posts: 36
Joined: Sat Sep 26, 2015 9:35 pm UTC
Location: Somewhere cosy.

Re: Count Up with the Four Fours Puzzle

16 = (4!-4‼)+4-4 = 4+4+4+4

That's factorial and double factorial.
The Seven Wonders of the World:
To see
To hear
To touch
To taste
To feel
To laugh
And to love

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

17 = 4*4+4/4

Yay, another one that can be done without concatenation or unary operators

SirGabriel
Posts: 35
Joined: Wed Jul 16, 2014 11:54 pm UTC

Re: Count Up with the Four Fours Puzzle

18 = 4!!+4!!+(4!!/4)

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

19 = 4! - 4 - 4/4

I wrote some code to find all the answers to this. All the numbers it's possible to generate using addition, subtraction, multiplication, division, exponentiation (with the maximum exponent limited to 16384), and concatenation are in the spoiler below:
Spoiler:
0: 4+4-4-4
1: (4+4-4)/4
2: 4*4/(4+4)
3: (4+4+4)/4
4: (4-4)*4+4
5: (4*4+4)/4
6: (4+4)/4+4
7: 4+4-4/4
8: 4+4+4-4
9: 4+4+4/4
10: (44-4)/4
12: (44+4)/4
15: 4*4-4/4
16: 4+4+4+4
17: 4*4+4/4
20: (4/4+4)*4
24: 4+4+4*4
28: (4+4)*4-4
32: 4*4+4*4
36: (4+4)*4+4
43: 44-4/4
44: 4-4+44
45: 4/4+44
48: (4+4+4)*4
52: 4+4+44
60: 4*4*4-4
63: (4^4-4)/4
64: (4+4)*(4+4)
65: (4^4+4)/4
68: 4*4*4+4
80: (4*4+4)*4
81: (4/4-4)^4
88: 44+44
111: 444/4
128: (4+4)*4*4
160: (44-4)*4
172: 44*4-4
180: 44*4+4
192: (44+4)*4
212: 4^4-44
240: 4^4-4*4
248: 4^4-4-4
255: 4^4-4/4
256: (4+4-4)^4
257: 4/4+4^4
264: 4+4+4^4
272: 4*4+4^4
300: 4^4+44
352: (4+4)*44
440: 444-4
448: 444+4
512: 4^4+4^4
625: (4/4+4)^4
704: 4*4*44
1008: (4^4-4)*4
1020: 4^4*4-4
1024: (4+4)^4/4
1028: 4^4*4+4
1040: (4^4+4)*4
1776: 444*4
1936: 44*44
2048: (4+4)*4^4
4092: (4+4)^4-4
4096: 4*4*4^4
4100: (4+4)^4+4
4444: 4444
11264: 4^4*44
14641: (44/4)^4
16384: (4+4)^4*4
20736: (4+4+4)^4
65532: (4*4)^4-4
65536: 4^4*4^4
65540: (4*4)^4+4
160000: (4*4+4)^4
262144: (4*4)^4*4
937024: 44^4/4
1048576: ((4+4)*4)^4
2560000: (44-4)^4
3748092: 44^4-4
3748100: 44^4+4
4194304: 4^(44/4)
5308416: (44+4)^4
14992384: 44^4*4
16777216: (4+4)^(4+4)
959512576: (44*4)^4
1073741824: (4^4)^4/4
4032758016: (4^4-4)^4
4294967292: (4^4)^4-4
4294967296: (4*4)^(4+4)
4294967300: (4^4)^4+4
4569760000: (4^4+4)^4
17179869184: (4^4)^4*4
38862602496: 444^4
1099511627776: (4^4*4)^4
14048223625216: 44^(4+4)
281474976710656: ((4+4)^4)^4
18446744073709551616: ((4*4)^4)^4
1208925819614629174706176: 4^(44-4)
77371252455336267181195264: 4^44/4
197352587024076973231046656: (44^4)^4
309485009821345068724781052: 4^44-4
309485009821345068724781060: 4^44+4
1237940039285380274899124224: 4^44*4
79228162514264337593543950336: 4^(44+4)
340282366920938463463374607431768211456: ((4^4)^4)^4
5444517870735015415413993718908291383296: (4+4)^44
95780971304118053647396689196894323976171195136475136: (4*4)^44
2050773823560610053645205609172376035486179836520607547294916966189367296: 44^44
9173994463960286046443283581208347763186259956673124494950355357547691504353939232280074212440502746218496: (4^4)^44
52374249726338269920211035149241586435466272736689036631732661889538140742474792878132321477214466514414186946040961136147476104734166288853256441430016: 4^(4^4-4)
3351951982485649274893506249551461531869841455148098344430890360930441007518386744200468574541725856922507964546621512713438470702986642486608412251521024: 4^4^4/4
13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084092: 4^4^4-4
13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084100: 4^4^4+4
53631231719770388398296099992823384509917463282369573510894245774887056120294187907207497192667613710760127432745944203415015531247786279785734596024336384: 4^4^4*4
3432398830065304857490950399540696608634717650071652704697231729592771591698828026061279820330727277488648155695740429018560993999858321906287014145557528576: 4^(4^4+4)
1552518092300708935148979488462502555256886017116696611139052038026050952686376886330878408828646477950487730697131073206171580044114814391444287275041181139204454976020849905550265285631598444825262999193716468750892846853816057856: (4+4)^4^4
2063650512248692368563827284830142994214247367328599695812346519635444931862206482321942405811160890213571855442410658901884170154307365379884917884620857722298385484371113610034107490923540785363375909797699954703703235518560788042337487885808736236287260081631789056: 4^444
179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216: (4*4)^4^4
5295234290518813958694052696765703539877636129016726673614641118920249401528833695219291788853023674320519052888070721543349779449470353315509176840272326589840282387004815049507387058834387690545681298091791630344876593393965914765953202265859793057074640778689676074897426540352087177411464898988145449760179672865153814333080118198079695296777241118464609887804811597512038167059947328040161798508872824087556816633856: 44^4^4
32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638215525166389437335543602135433229604645318478604952148193555853611059596230656: (4^4)^4^4
1090748135619415929462984244733782862448264161996232692431832786189721331849119295216264234525201987223957291796157025273109870820177184063610979765077554799078906298842192989538609825228048205159696851613591638196771886542609324560121290553901886301017900252535799917200010079600026535836800905297805880952350501630195475653911005312364560014847426035293551245843928918752768696279344088055617515694349945406677825140814900616105920256438504578013326493565836047242407382442812245131517757519164899226365743722432277368075027627883045206501792761700945699168497257879683851737049996900961120515655050115561271491492515342105748966629547032786321505730828430221664970324396138635251626409516168005427623435996308921691446181187406395310665404885739434832877428167407495370993511868756359970390117021823616749458620969857006263612082706715408157066575137281027022310927564910276759160520878304632411049364568754920967322982459184763427383790272448438018526977764941072715611580434690827459339991961414242741410599117426060556483763756314527611362658628383368621157993638020878537675545336789915694234433955666315070087213535470255670312004130725495834508357439653828936077080978550578912967907352780054935621561090795845172954115972927479877527738560008204118558930004777748727761853813510493840581861598652211605960308356405941821189714037868726219481498727603653616298856174822413033485438785324024751419417183012281078209729303537372804574372095228703622776363945290869806258422355148507571039619387449629866808188769662815778153079393179093143648340761738581819563002994422790754955061288818308430079648693232179158765918035565216157115402992120276155607873107937477466841528362987708699450152031231862594203085693838944657061346236704234026821102958954951197087076546186622796294536451620756509351018906023773821539532776208676978589731966330308893304665169436185078350641568336944530051437491311298834367265238595404904273455928723949525227184617404367854754610474377019768025576605881038077270707717942221977090385438585844095492116099852538903974655703943973086090930596963360767529964938414598185705963754561497355827813623833288906309004288017321424808663962671333528009232758350873059614118723781422101460198615747386855096896089189180441339558524822867541113212638793675567650340362970031930023397828465318547238244232028015189689660418822976000815437610652254270163595650875433851147123214227266605403581781469090806576468950587661997186505665475715792896: 4^(4+4)^4
-1: (4-4-4)/4
-2: (4+4)/4-4
-3: (4/4)^4-4
-4: (4-4)*4-4
-7: 4/4-4-4
-8: 4+4-4*4
-10: (4-44)/4
-12: (4/4-4)*4
-15: 4/4-4*4
-16: (4-4-4)*4
-28: 4*4-44
-36: 4+4-44
-43: 4/4-44
-44: 4-4-44
-48: (4-4*4)*4
-60: 4-4*4*4
-63: (4-4^4)/4
-160: (4-44)*4
-172: 4-44*4
-212: 44-4^4
-240: 4*4-4^4
-248: 4+4-4^4
-255: 4/4-4^4
-256: 4-4-4^4
-440: 4-444
-1008: (4-4^4)*4
-1020: 4-4^4*4
-4092: 4-(4+4)^4
-65532: 4-(4*4)^4
-3748092: 4-44^4
-4294967292: 4-(4^4)^4
-309485009821345068724781052: 4-4^44
-13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084092: 4-4^4^4
Last edited by faubiguy on Tue Dec 08, 2015 4:43 am UTC, edited 2 times in total.

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

20 = 4*(⌈(√((((√4)!)((4/(√4))!))!))⌉)
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

21 = 4! - 4 + 4/4

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

22 = 44/(4-√4)
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

23 = 4! - (4/4)^4

Elvish Pillager
Posts: 1007
Joined: Mon Aug 04, 2008 9:58 pm UTC
Location: Everywhere you think, nowhere you can possibly imagine.
Contact:

Re: Count Up with the Four Fours Puzzle

24 = 4*4 + 4 + 4

Using unary operators feels a bit weird to me. Especially square root: we can't use cube root because it has a 3 in it, but we can use square root just because the symbolic notation doesn't have a number drawn in it...? And the successor operator must obviously be forbidden, but there's no obvious rule about where to draw the line.

Because I was curious, I wrote a script to see what numbers are accessible using only a SINGLE four, by repeatedly applying the unary operators that have already been used in this thread (floor, square root, factorial, subfactorial, and double factorial).

The script:
Spoiler:

Code: Select all

`import mathfrom functools import reduceresult = {}result [4] = "4"frontier = [4]next_frontier = []sub_factorial = [0, 0, 1, 2, 9, 44, 265, 1854, 14883]def record (number, representation):  if number not in result:    result [number] = representation    next_frontier.append (number)while len(frontier) >0:   for input in frontier:    root = math.floor (math.sqrt (input))        record (root, ("" if root*root == input else "floor.") + "sqrt(" + result [input] + ")")    if input >0 and input <100:      record (math.factorial (input), "(" + result [input] + ")!")      record (reduce(lambda x,y: y*x, range(input,0,-2)), "(" + result [input] + ")!!")    if input <len( sub_factorial):      record (sub_factorial [input], "!(" + result [input] + ")")  frontier = next_frontier  next_frontier = []  for number in range (0, 200):  if number in result:    print (str( number) + " = " + result [number])  else:    print ("...")`

The results:
Spoiler:

Code: Select all

`0 = !(floor.sqrt(sqrt(4)))1 = floor.sqrt(sqrt(4))2 = sqrt(4)3 = sqrt(!(4))4 = 45 = floor.sqrt(floor.sqrt((!(4))!!))6 = (sqrt(!(4)))!7 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!!)))8 = (4)!!9 = !(4)10 = floor.sqrt((floor.sqrt(floor.sqrt((!(4))!!)))!)11 = sqrt(floor.sqrt(!((4)!!)))12 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(((4)!!)!!))!!)))13 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(((floor.sqrt(floor.sqrt((!(4))!!)))!!)!))))!!))))14 = floor.sqrt(floor.sqrt(((4)!!)!))15 = (floor.sqrt(floor.sqrt((!(4))!!)))!!16 = floor.sqrt(!((sqrt(!(4)))!))17 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!)))))18 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!!))))19 = floor.sqrt(((4)!!)!!)20 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt((floor.sqrt((floor.sqrt(floor.sqrt((!(4))!!)))!))!!))!!)))))21 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!!))))!))!)))))))!!))))22 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((floor.sqrt(floor.sqrt((!(4))!!)))!!)!!)))!)))))23 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!)))24 = (4)!25 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!))))!))))26 = floor.sqrt(((sqrt(!(4)))!)!)27 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!))))!!)))28 = floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!))...30 = floor.sqrt((!(4))!!)31 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!))))!)))))!!))))!)))))32 = floor.sqrt(floor.sqrt(floor.sqrt(((floor.sqrt(floor.sqrt((!(4))!!)))!!)!)))33 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!))))!!)))))!!)))))34 = floor.sqrt(floor.sqrt(floor.sqrt(((4)!)!!)))35 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!)))))36 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!!))))!))!))))))37 = floor.sqrt(floor.sqrt(((floor.sqrt(floor.sqrt((!(4))!!)))!!)!!))......40 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!))))!)))))!!)))......43 = floor.sqrt(floor.sqrt((floor.sqrt((floor.sqrt(floor.sqrt((!(4))!!)))!))!))44 = !(floor.sqrt(floor.sqrt((!(4))!!)))...46 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!)))...48 = ((sqrt(!(4)))!)!!...50 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((!(floor.sqrt(floor.sqrt((!(4))!!))))!)))))51 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(((sqrt(!(4)))!)!))!!)))...53 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((!(floor.sqrt(floor.sqrt((!(4))!!))))!!))))54 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!))))))!!)))!))))))...56 = floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!!))...58 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((((sqrt(!(4)))!)!!)!))))))!)))))))!))))))...60 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((((sqrt(!(4)))!)!!)!))))))!)))))))!!)))))61 = floor.sqrt((floor.sqrt((floor.sqrt(floor.sqrt((!(4))!!)))!))!!)62 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!!))))!))))))63 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!))))!)))))...65 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!!))))!!)))))...67 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((sqrt(floor.sqrt(!((4)!!))))!)))!))))))68 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!))))!!))))69 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!))))70 = floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!!))))!)...............76 = floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!))))))!!))77 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((((sqrt(!(4)))!)!!)!))))))!))))))78 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!!)))79 = floor.sqrt(floor.sqrt((sqrt(floor.sqrt(!((4)!!))))!))...81 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((((sqrt(!(4)))!)!!)!)))))............86 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((((sqrt(!(4)))!)!!)!!)))).....................94 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!!)))))!)))..................101 = floor.sqrt((sqrt(floor.sqrt(!((4)!!))))!!)...103 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((!(floor.sqrt(floor.sqrt((!(4))!!))))!))))))!)))))...105 = (floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(!((sqrt(!(4)))!)))!!))))!!106 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt((!(4))!!))!))))...108 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((((sqrt(!(4)))!)!!)!!)))))!))))))...110 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((!(floor.sqrt(floor.sqrt((!(4))!!))))!))))))!!))))......113 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((((sqrt(!(4)))!)!!)!!)))))!!)))))......116 = floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!!)))))!!))117 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(((sqrt(!(4)))!)!))!!))))!)))))...119 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt((!(4))!!))!!)))120 = (floor.sqrt(floor.sqrt((!(4))!!)))!121 = floor.sqrt(!((4)!!))...123 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(((sqrt(!(4)))!)!))!!))))!!)))).....................131 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!))))!)))))!!))))!))))))!))))............136 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(((4)!!)!!))!))).....................144 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!))))!)))))!!))))!))))))!!)))......147 = floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(((4)!!)!!))!!))))!))...149 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((!(floor.sqrt(floor.sqrt((!(4))!!))))!!)))))!)))))........................158 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((!(floor.sqrt(floor.sqrt((!(4))!!))))!!)))))!!))))159 = floor.sqrt(floor.sqrt((floor.sqrt(((4)!!)!!))!!)).........163 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(((floor.sqrt(floor.sqrt((!(4))!!)))!!)!))))!))))...............169 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!))))))!!)))!)))))))!)))))....................................182 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!))))))!!)))!)))))))!!))))...184 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(((floor.sqrt(floor.sqrt((!(4))!!)))!!)!))))!!)))..................191 = floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(((4)!!)!)))!!)))!)))))!!))))))!!)))))!))))!))))))..................198 = floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt(floor.sqrt((floor.sqrt((floor.sqrt((floor.sqrt(floor.sqrt((!(4))!!)))!))!!))!!))))))!)))...`

I suspect that all natural numbers are accessible from a single 4 using only these functions. Note that my script doesn't consider taking factorials of very high numbers, or taking multiple square roots without flooring in between.
Also known as Eli Dupree. Check out elidupree.com for my comics, games, and other work.

GENERATION A(g64, g64): Social experiment. Take the busy beaver function of the generation number and add it to your signature.

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

Good point, but there isn't really an alternative - most numbers require the use of unary operators in the solution.

25 = 4!+4/(√4+√4)
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

generalz
Posts: 10
Joined: Wed Jan 14, 2015 11:18 am UTC
Location: Central Europe

Re: Count Up with the Four Fours Puzzle

26 = 4! + (4+4)/4

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

27 = √!4*√!4*√!4*⌊√√4⌋
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

Lawrencelot
Posts: 23
Joined: Sun Oct 13, 2013 8:10 am UTC

Re: Count Up with the Four Fours Puzzle

28 = 4! + 4 + (4-4)!

faubiguy
Posts: 13
Joined: Sun Aug 11, 2013 9:20 am UTC
Contact:

Re: Count Up with the Four Fours Puzzle

29 = 4! + 4 + (4-4)!

emlightened
Posts: 36
Joined: Sat Sep 26, 2015 9:35 pm UTC
Location: Somewhere cosy.

Re: Count Up with the Four Fours Puzzle

30 = √4*√!4*(√4+√!4) = (4+4)*4-√4

I try to limit myself to the basic ops, sqrt, and factorial variants. Sometimes I use % or start with (say) .4, but I've never liked using ceiling/floor.
The Seven Wonders of the World:
To see
To hear
To touch
To taste
To feel
To laugh
And to love

JackHK
Posts: 13
Joined: Sat Aug 29, 2015 7:47 pm UTC
Location: magic.catch.wolves

Re: Count Up with the Four Fours Puzzle

31 = 4! + (4!+4)/4

This one was surprisingly difficult to find...

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

32 = 4(√!4+√4)/√4
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

PsiSquared
Posts: 126
Joined: Wed May 09, 2012 6:02 pm UTC

Re: Count Up with the Four Fours Puzzle

emlightened wrote:I try to limit myself to the basic ops, sqrt, and factorial variants. Sometimes I use % or start with (say) .4, but I've never liked using ceiling/floor.

Yeah. Allowing the floor function makes the game kind of pointless (you just use factorials and squareroots for as long as it takes to reach your desired number).

Anyway:

33 = 4!+√!4+4-√4

patzer
Posts: 405
Joined: Fri Mar 30, 2012 5:48 pm UTC
Contact:

Re: Count Up with the Four Fours Puzzle

34 = 4*4*√4+√4
If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family Anatidae on our hands. –Douglas Adams

JackHK
Posts: 13
Joined: Sat Aug 29, 2015 7:47 pm UTC
Location: magic.catch.wolves

Re: Count Up with the Four Fours Puzzle

35 = (((4! + 4)/4)!!)/(√!4)

emlightened
Posts: 36
Joined: Sat Sep 26, 2015 9:35 pm UTC
Location: Somewhere cosy.

Re: Count Up with the Four Fours Puzzle

36 = (4+4)*4 +4 = ((4!!)!/(4!!)!!)/√!4 + !√4
The Seven Wonders of the World:
To see
To hear
To touch
To taste
To feel
To laugh
And to love

Posts: 49
Joined: Thu Jun 25, 2015 10:43 am UTC

Re: Count Up with the Four Fours Puzzle

37 = 4!+sqrt(4*4)+!4
This is a signature, in case you didn't notice.

Current tokens: 66.562

SirGabriel
Posts: 35
Joined: Wed Jul 16, 2014 11:54 pm UTC

Re: Count Up with the Four Fours Puzzle

emlightened wrote:I've never liked using ceiling/floor.

I agree. Also, what does !4 mean?

38 = 4!!+4!+4+√4

emlightened
Posts: 36
Joined: Sat Sep 26, 2015 9:35 pm UTC
Location: Somewhere cosy.

Re: Count Up with the Four Fours Puzzle

Subfactorial; it counts derangements. !0 = 1, !1 = 0, !2 = 1, !3 = 2, !4 = 9, !5 = 44 and !6 = 265. It's pretty useful, as we can get 3 = √!4 and 1 = !√4 with just unary operators.

.4√4 + !4 - √4

(That's the 0.4'th root, not the 4'th root.)
The Seven Wonders of the World:
To see
To hear
To touch
To taste
To feel
To laugh
And to love

Who is online

Users browsing this forum: The Snide Sniper and 13 guests