How much of a math nerd are you?
Moderators: gmalivuk, Moderators General, Prelates
How much of a math nerd are you?
When I am bored, I either write Pascal's Triangle (about 15 rows) and then write out the whole "a, a+b, a^2+2ab+b^2" thing or count in binary. So I would consider myself reasonably high on the math nerd scale.
Re: How much of a math nerd are you?
So, I guess what I meant to ask is, "What astoundingly nerdy things do you do?"
Re: How much of a math nerd are you?
Counting in trinary on my hand (0=finger down, 1=finger bent, 2=finger extended, total 39365)
Doing math in binary, trinary, and hex
Reading books on math
Doing physics problems for fun (ie How much power would be required to crash the moon into Earth in 1 minute)
Other things I can't think of right now.
My hand hurts now from counting....
Doing math in binary, trinary, and hex
Reading books on math
Doing physics problems for fun (ie How much power would be required to crash the moon into Earth in 1 minute)
Other things I can't think of right now.
My hand hurts now from counting....
851. When plumbing the depths of depravity, I must remember to come up for air.
1525 Things Mr. Welch can no longer do in an RPG
1525 Things Mr. Welch can no longer do in an RPG
Re: How much of a math nerd are you?
If you were also a gaming nerd, you'd probably modify that to "72 hours".krilitor wrote:Doing physics problems for fun (ie How much power would be required to crash the moon into Earth in 1 minute)
This is a placeholder until I think of something more creative to put here.
 Xanthir
 My HERO!!!
 Posts: 5413
 Joined: Tue Feb 20, 2007 12:49 am UTC
 Location: The Googleplex
 Contact:
Re: How much of a math nerd are you?
krilitor wrote:Counting in trinary on my hand (0=finger down, 1=finger bent, 2=finger extended, total 39365)
Doing math in binary, trinary, and hex
Reading books on math
Doing physics problems for fun (ie How much power would be required to crash the moon into Earth in 1 minute)
Other things I can't think of right now.
My hand hurts now from counting....
That's why you don't do trinary! You just can't maintain it for any length of time.
Now, *binary*, you can do. I do all my fingercounting in binary. I have a calculator at hand too often to have learned fast binary math on my fingers, but I like being able to count to 1k easily. I've found that I can only reliably get two digits out of each foot, though (big toe, then rest of toes).
(defun fibs (n &optional (a 1) (b 1)) (take n (unfold '+ a b)))
 Mathmagic
 It's not as cool as that Criss Angel stuff.
 Posts: 2926
 Joined: Thu Nov 30, 2006 12:48 am UTC
 Location: In ur fora posting in teh threads
Re: How much of a math nerd are you?
The only things I ever do is prove things for fun (I derived an expression for the amount of area swept out by an elliptical trajectory, not realizing Kepler did it first ), and looking up maths and physics concepts on Wikipedia. I'll also apply physics and math to everyday scenarios, and subsequently get poked fun at for being such a math/physics nerd.
Axman: That, and have you played DX 10 games? It's like having your corneas swabbed with clits made out of morphine.
Pathway: cocks cocks cocks
Pathway: cocks cocks cocks
Re: How much of a math nerd are you?
I regularly get math problems generated in my head. For example, I figured out that the 3D diagonal of a rectangular prism is Sqrt(a^{2}+b^{2}+c^{2}) I also figured out that the height of an isosceles is Sqrt(.75) * a, where a is the length of the two sides that are equal.
Re: How much of a math nerd are you?
You mean an equilateral triangle.
This is a placeholder until I think of something more creative to put here.
 skeptical scientist
 closedminded spiritualist
 Posts: 6142
 Joined: Tue Nov 28, 2006 6:09 am UTC
 Location: San Francisco
Re: How much of a math nerd are you?
 I am a graduate student in mathematics working on his PhD.
 I read math books and papers in unrelated fields just for the hell of it.
 I own and regularly wear mathrelated Tshirts, and have done so since I was 11.
 I travel as far as China to attend mathematics conferences.
 I get annoyed at the mistake on Star Trek when Wesley Crusher refers to a "Rianaman" tensor field.
 When I need to procrastinate from my studies or otherwise take a break, I do math on internet forums.
 I recently gave a seminar talk on some of the recreational math I did on said internet forums, and received compliments* on the quality of the talk.
 I have several times mistakenly referred to a summer REU as a "recreational experience for undergrads" because research and recreation are the same thing.
 I entered my first statewide mathematics competition in 5th grade. I won it.
*I mistakenly typed that as "complements" because the latter occurs more often in my writing.
I'm looking forward to the day when the SNES emulator on my computer works by emulating the elementary particles in an actual, physical box with Nintendo stamped on the side.
"With math, all things are possible." —Rebecca Watson
"With math, all things are possible." —Rebecca Watson
Re: How much of a math nerd are you?
I once proved unique prime factorization. Rigorously. Took up 42 handwritten pages.
I also handcalculated all indefinite binary quadratic forms (up to equivalence) up to discriminant 200 or so.
And, yes, I also procrastinate by doing math on forums.
I also handcalculated all indefinite binary quadratic forms (up to equivalence) up to discriminant 200 or so.
And, yes, I also procrastinate by doing math on forums.
Jerry Bona wrote:The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?
 Mathmagic
 It's not as cool as that Criss Angel stuff.
 Posts: 2926
 Joined: Thu Nov 30, 2006 12:48 am UTC
 Location: In ur fora posting in teh threads
Re: How much of a math nerd are you?
skeptical scientist wrote:When I need to procrastinate from my studies or otherwise take a break, I do math on internet forums.
antonfire wrote:And, yes, I also procrastinate by doing math on forums.
For what it's worth, this applies to me too. I just figured that it was implied, since we're all here in the first place.
Axman: That, and have you played DX 10 games? It's like having your corneas swabbed with clits made out of morphine.
Pathway: cocks cocks cocks
Pathway: cocks cocks cocks
 skeptical scientist
 closedminded spiritualist
 Posts: 6142
 Joined: Tue Nov 28, 2006 6:09 am UTC
 Location: San Francisco
Re: How much of a math nerd are you?
mathmagic wrote:skeptical scientist wrote:When I need to procrastinate from my studies or otherwise take a break, I do math on internet forums.antonfire wrote:And, yes, I also procrastinate by doing math on forums.
For what it's worth, this applies to me too. I just figured that it was implied, since we're all here in the first place.
Yeah, that's basically an xkcd math forum universal property*.
*Feel free to demonstrate your math nerdiness by explaining why this is not an example of a universal property.
I'm looking forward to the day when the SNES emulator on my computer works by emulating the elementary particles in an actual, physical box with Nintendo stamped on the side.
"With math, all things are possible." —Rebecca Watson
"With math, all things are possible." —Rebecca Watson
Re: How much of a math nerd are you?
Clearly, xkcd forumites are not structurally identical; therefore, there do not exist isomorphisms between them, and so no universal property can possibly apply.
This is a placeholder until I think of something more creative to put here.
 Mathmagic
 It's not as cool as that Criss Angel stuff.
 Posts: 2926
 Joined: Thu Nov 30, 2006 12:48 am UTC
 Location: In ur fora posting in teh threads
Re: How much of a math nerd are you?
Robin S wrote:Clearly, xkcd forumites are not structurally identical
One of us! One of us!
Axman: That, and have you played DX 10 games? It's like having your corneas swabbed with clits made out of morphine.
Pathway: cocks cocks cocks
Pathway: cocks cocks cocks
Re: How much of a math nerd are you?
I usually write down random formulae including or solving for Pi. Or I draw a golden rectangle...or or or
mikekearn wrote:You even have an appropriate shirt. Excellent.

 Posts: 15
 Joined: Mon May 05, 2008 7:33 pm UTC
Re: How much of a math nerd are you?
I count in binary, write up paper scripts to show people how binary works. Like 8421, each digit represents that and you add them up.
At one of those "guess how many peanut m&m's are in the jar" contest, i measured one of the m&m's measured the jar, then got within 20 m&m's of the actual number.
Um...and oddly enough, i actually do calculate which path to my destination will be the quickest.
At one of those "guess how many peanut m&m's are in the jar" contest, i measured one of the m&m's measured the jar, then got within 20 m&m's of the actual number.
Um...and oddly enough, i actually do calculate which path to my destination will be the quickest.
Re: How much of a math nerd are you?
Was anyone else bothered by this repeated use of "or" without listing any operands?Shakleton wrote:I usually write down random formulae including or solving for Pi. Or I draw a golden rectangle...or or or
This is a placeholder until I think of something more creative to put here.
Re: How much of a math nerd are you?
Robin S wrote:Was anyone else bothered by this repeated use of "or" without listing any operands?Shakleton wrote:I usually write down random formulae including or solving for Pi. Or I draw a golden rectangle...or or or
I'm sorry but to my defense the direct translation is a very common way of saying you could list sooo much things in addition in Germany.
Let's do it like this:
[*]OR count in Binary
[*]OR do funny MathExercises I invented
[*]OR Think of two random numbers and a random operator and do the calculation in my head for training
[*]OR think of algorithms for my BASICProgramms at home.
mikekearn wrote:You even have an appropriate shirt. Excellent.
Re: How much of a math nerd are you?
I once proved unique prime factorization. Rigorously. Took up 42 handwritten pages.
I think you're doing it wrong... We did this in my class last semester, and it definitely didn't take that much space... (then again, I don't know where you started from, what theorems you took as given)
I'm majoring in computer engineering.
But I'm taking enough math courses for a math degree (or I was, the last time I checked).
I would get a doublemajor, but it would require me to take additional geneds.
I routinely look up new math on wikipedia.
I inform my friends of mathematical paradoxes.
There's an art to cooking toast
Never try to guess
Cook it till it's smoking
Then twenty seconds less.
Never try to guess
Cook it till it's smoking
Then twenty seconds less.
 Sir_Elderberry
 Posts: 4206
 Joined: Tue Dec 04, 2007 6:50 pm UTC
 Location: Sector ZZ9 Plural Z Alpha
 Contact:
Re: How much of a math nerd are you?
Robin S wrote:If you were also a gaming nerd, you'd probably modify that to "72 hours".krilitor wrote:Doing physics problems for fun (ie How much power would be required to crash the moon into Earth in 1 minute)
Hah! No. Skull Kid failed because of that. I don't care how hard you play any ocarina, no Inverted Song of Time will give you time to stop that thing in one minute.
(Personally, I was always irritated that Terminus didn't suffer tidal effects from the descending moon, but, y'know, magic.)
http://www.geekyhumanist.blogspot.com  Science and the Concerned Voter
Well. You heard him.
Belial wrote:You are the coolest guy that ever cooled.
I reiterate. Coolest. Guy.
Well. You heard him.
Re: How much of a math nerd are you?
Sir_Elderberry wrote:(Personally, I was always irritated that Terminus didn't suffer tidal effects from the descending moon, but, y'know, magic.)
Clearly the moon was massless.
I mean. It had a face. How weird was that?
There's an art to cooking toast
Never try to guess
Cook it till it's smoking
Then twenty seconds less.
Never try to guess
Cook it till it's smoking
Then twenty seconds less.
 Sir_Elderberry
 Posts: 4206
 Joined: Tue Dec 04, 2007 6:50 pm UTC
 Location: Sector ZZ9 Plural Z Alpha
 Contact:
Re: How much of a math nerd are you?
Likpok wrote:Sir_Elderberry wrote:(Personally, I was always irritated that Terminus didn't suffer tidal effects from the descending moon, but, y'know, magic.)
Clearly the moon was massless.
I mean. It had a face. How weird was that?
I played that game this weekend for the first time in years, and I have to wonder how that didn't bother me as a child. I mean, it's really a pretty freaky thing, and nobody really seems to care that much iirc.
http://www.geekyhumanist.blogspot.com  Science and the Concerned Voter
Well. You heard him.
Belial wrote:You are the coolest guy that ever cooled.
I reiterate. Coolest. Guy.
Well. You heard him.
Re: How much of a math nerd are you?
No, no. Rigorously.Likpok wrote:I think you're doing it wrong... We did this in my class last semester, and it definitely didn't take that much space... (then again, I don't know where you started from, what theorems you took as given)
Well, all right, I started with Z is a commutative ring with identity together with a nonempty wellordered subset closed under multiplication and addition (the positive integers) and satisfying the trichotomy property.
After that, I didn't skip any steps, including applications of associativity, commutativity, and the like.
Jerry Bona wrote:The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?
 skeptical scientist
 closedminded spiritualist
 Posts: 6142
 Joined: Tue Nov 28, 2006 6:09 am UTC
 Location: San Francisco
Re: How much of a math nerd are you?
Likpok wrote:I once proved unique prime factorization. Rigorously. Took up 42 handwritten pages.
I think you're doing it wrong... We did this in my class last semester, and it definitely didn't take that much space... (then again, I don't know where you started from, what theorems you took as given)
I agree. Taking the basic properties of arithmetic on the natural numbers as axioms:
Spoiler:
I will also use the wellordering principle of the natural numbers as well as induction.
Defn: We say a divides b, and write ab, if b=ac for some number c. If ab, we say a is a divisor of b.
Defn: We say p is prime if p>1, and p has no divisors among the natural numbers other than p and 1.
Lemma 1: 1 has no divisors among the natural numbers other than itself.
Proof: If c>1, a>0, ac>a, so ac ≥ a+1 ≥ (0+1)+1=2 > 1. Therefore if c>1, c does not divide 1.
Lemma 2: Let a and b be natural numbers, and let S be the set S={x : x is a natural number and abx}. Then for some k, S={nk : n is a natural number}.
Proof: Certainly aba, so abx for some x>0. By the wellordering principle, abk for some least k>0. (In fact, k is at most a.) Certainly ab(nk) for each natural number n, since there is some factor c with ac=bk, so a(nc)=b(nk), so S is contained in {nk : n is a natural number}. Suppose x is some other member of S, and k does not divide x. Then (easy proof by induction) x=mk+l for some 0<l<k. We know that abx, and bx=bmk+bl, so a(bmk+bl), and therefore bmk+bl=ra. Since abk, bk=sa, so bmk=msa, and therefore bl=ramsa=(rms)a, so abl contradicting the minimality of k. So k divides x.
Lemma 3: If abc, and a is prime, then ab or ac.
Proof: Let abc, and let S={x : x is a natural number and abx}. By the previous lemma, S={nk : n is a natural number} for some natural number k, and since both a and c are elements of S, ka and kc. If k=1, then ab and we're done. Otherwise, since a is prime and ka, k=a, and kc, so ac and we're done.
Lemma 4: If pq_{1}...q_{n} and p is prime, then pq_{i} for some i.
Proof: By induction on n. If pq_{1}, then certainly pq_{1}. Now assume the result for n1, and suppose pq_{1}...q_{n}. By lemma 3, pq_{1}...q_{n1} or pq_{n}. By the inductive hypothesis, pq_{i} for some i.
Lemma 5: If n>1 is a natural number, then n has a factorization as a product of primes.
Proof: By induction on n. If n=2, then n=2 is a prime factorization of n. If n>2, then if n is prime, n=n is a prime factorization. If n is not prime, then n=ab for some a,b<n. By the inductive hypothesis, both a and b have prime factorizations a=p_{1}...p_{r} and b=q_{1}...q_{s}. Then n=p_{1}...p_{r}q_{1}...q_{s} is a prime factorization of n=ab.
Theorem: If n>1 is a natural number, then n has a unique factorization as a product of primes.
Proof: By lemma 5, the factorization exists, so we need only show that it is unique. We go by induction on n, noting that the result is true when n is prime. If n=p_{1}...p_{r}=q_{1}...q_{s} are two prime factorizations, then p_{1} occurs in the first factorization. By lemma 4. p_{1}q_{i} for some i, and hence p_{1}=q_{i}, since q_{i} is prime. So both factorizations are p_{1} times some prime factorization of n/p_{1}; by induction, the latter is unique, so n admits a unique factorization as a product of primes.
□
That's about as rigorous as you can ask for. Since you specifically mentioned explicit applications of e.g. the commutative property, it seems like what you want is a formal derivation in first order arithmetic, which doesn't actually exist, since unique factorization is not a sentence of first order arithmetic, let alone a theorem. The best you can do is a sentence for each n asserting that if x has a prime factorization of length n, then this is unique. Since to capture unique factorization in first order arithmetic you need infinitely many theorems, you can't actually derive all of them in 42 pages.
I'm looking forward to the day when the SNES emulator on my computer works by emulating the elementary particles in an actual, physical box with Nintendo stamped on the side.
"With math, all things are possible." —Rebecca Watson
"With math, all things are possible." —Rebecca Watson
Re: How much of a math nerd are you?
Only if you have low standards.skeptical scientist wrote:That's about as rigorous as you can ask for.
I started from a slightly different place than you did, but anyway, quick list a few of the many things you skipped, assuming you want to start from where I did (and most apply to where you started as well):
Define ">". Define "≥". Prove that if a>0, b>c, then ab>ac and various other properties of > and ≥ and . (e.g., a>0, ba => a≥b, used implicitly in the proof of Lemma 5.) If you prefer to start where you did, fine. Define "subtraction". When is it defined? Prove that it's welldefined in those cases. Prove various useful properties of it.
Prove induction from wellordering or vice versa (why make more assumptions than you need?). Better yet, just use wellordering everywhere, it generally looks better anyway.
Justify each "certainly" (this adds up to a lot). You have no idea how many times you've associated during all that until you check.
Define "p_{1}...p_{n}". Oh, wait, since, y'know, that's bad notation, use pi notation instead. Define pi notation. Prove that pi notation actually works. Prove various useful properties of it.
Define "factorization as a product of primes". Define "unique factorization as a product of primes" ("up to reordering"? "in ascending order"?). Don't play fast and loose with ordered sequences.
All the stuff you skipped adds up to a lot, and I wasn't exactly trying to squeeze every square inch out of every page. And, yes, I took a slightly longer path than you gave, since I also wanted to prove some niceish lemmas along the way.
And, no, I'm not talking about a proof in first order arithmetic. I'm talking about a formal proof^{1} that any ring that satisfies the conditions above (commutative ring with identity and a wellordered nonempty subset closed under *, + satisfying the trichotomy property) has unique prime factorization. And, yes, that needs to be stated more precisely before it makes sense.
For example, applications of the commutativity property are just uses of the assumption that our ring is commutative.
^{1} Allowing defined terms and even, *gasp*, defined notation like a*b and f(x).
Jerry Bona wrote:The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?
 skeptical scientist
 closedminded spiritualist
 Posts: 6142
 Joined: Tue Nov 28, 2006 6:09 am UTC
 Location: San Francisco
Re: How much of a math nerd are you?
There's a difference between being formal and being anal. When you ask me to justify "certainly aba" you're being anal. Explicitly stating every use of commutativity and associativity is also being anal  once I've stated that my set is a commutative ring, if I want to write abc instead of (ab)c and state that it is divisible by b (without specifying leftdivisible or right divisible, and without proof), that should be reasonable under any level of rigor. Unless you actually want a formal linebyline derivation, which nobody ever does except possibly the three formal derivation exercises they are given when they first learn what one is.
When you are writing mathematics, you should take into account that you are talking to a human, reasonably smart reader, and should try to follow the golden rule. As a reader, I would want someone to say "aba" or "abk, so abnk" without justification, since the justification is so obvious that reading it is a waste of my time. So while you should only use a phrase like "certainly" when the thing really is obvious, don't waste the reader's time by proving the obvious. (And when I say obvious, I really do mean obvious, and not "obvious" in the sense of the old joke of the mathematician who spends 15 minutes working something out before concluding, "oh yes, it is obvious".)
And yes, I would have done pi notation, except I'm trying to respect the users of the old skin by not using texmath when I don't have to.
When you are writing mathematics, you should take into account that you are talking to a human, reasonably smart reader, and should try to follow the golden rule. As a reader, I would want someone to say "aba" or "abk, so abnk" without justification, since the justification is so obvious that reading it is a waste of my time. So while you should only use a phrase like "certainly" when the thing really is obvious, don't waste the reader's time by proving the obvious. (And when I say obvious, I really do mean obvious, and not "obvious" in the sense of the old joke of the mathematician who spends 15 minutes working something out before concluding, "oh yes, it is obvious".)
And yes, I would have done pi notation, except I'm trying to respect the users of the old skin by not using texmath when I don't have to.
I'm looking forward to the day when the SNES emulator on my computer works by emulating the elementary particles in an actual, physical box with Nintendo stamped on the side.
"With math, all things are possible." —Rebecca Watson
"With math, all things are possible." —Rebecca Watson
Re: How much of a math nerd are you?
I never claimed my level of rigor was reasonable. In fact, I think I implied the opposite. Isn't that the point of this thread? "Feats" of unreasonable nerdhood?skeptical scientist wrote:that should be reasonable under any level of rigor.
It was never really meant to be read by anyone. It was a (useful) exercise, and I learned a thing or two from it. I was not "doing it wrong", unless by "doing it wrong" you mean "doing it very very rigorously".
Well, now you know that that last bit is wrong. (Well, okay, not quite, I stopped writing "commutativity" and "associativity" and "definition of subtraction" after a while and just wrote long chains like a(bc)=a(b+c)=ab+a(c)=ab+ac=abac.)skeptical scientist wrote:Unless you actually want a formal linebyline derivation, which nobody ever does except possibly the three formal derivation exercises they are given when they first learn what one is.
Jerry Bona wrote:The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?
Re: How much of a math nerd are you?
the point of writing math is getting the other guy to understand. I've frequently lost points on tests and competitions by assuming the tester knew what the hell he was talking about and just needed to be shown that I knew, rather then needed everything explained stepbystep.
I once stayed up till 230 doing discrete math. next morning at 730, I started getting up, the nrelized that by derivation of a slimy green strechable function over it's n! (or something combinatoricy which I don't remember) options, you can conclude that I would take far to long to get up for school and that there was no point in budging from the bed. so I rolled over and got back to half sleep.
I once stayed up till 230 doing discrete math. next morning at 730, I started getting up, the nrelized that by derivation of a slimy green strechable function over it's n! (or something combinatoricy which I don't remember) options, you can conclude that I would take far to long to get up for school and that there was no point in budging from the bed. so I rolled over and got back to half sleep.
It rains on the enemy too!
Re: How much of a math nerd are you?
I did something very similar.
"Because the cardinality of the set of times between now and when I have to be in class is the same as that between a few minutes later and when I have to be in class, sleeping more can't actually make me any later. Back to sleep."
"Because the cardinality of the set of times between now and when I have to be in class is the same as that between a few minutes later and when I have to be in class, sleeping more can't actually make me any later. Back to sleep."
Jerry Bona wrote:The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?
Re: How much of a math nerd are you?
Ah, I see. In English "etc." is more standard.Shakleton wrote:I'm sorry but to my defense the direct translation is a very common way of saying you could list sooo much things in addition in Germany.
It freaked me out a fair bit when I first saw it.Sir_Elderberry wrote:I played that game this weekend for the first time in years, and I have to wonder how that didn't bother me as a child. I mean, it's really a pretty freaky thing, and nobody really seems to care that much iirc.
You're assuming certain things about the nature of time there.antonfire wrote:"Because the cardinality of the set of times between now and when I have to be in class is the same as that between a few minutes later and when I have to be in class, sleeping more can't actually make me any later. Back to sleep."
This is a placeholder until I think of something more creative to put here.
Re: How much of a math nerd are you?
I draw fibbonaci spirals (with circular arcs as approximations), doodle proofs of pythagoras' theorem (and occasionally think up one.), and draw out steps of cellular autonoma with various rules. I also play a mean game of Dots and Boxes.
 Indigo is a lie.
Which idiot decided that websites can't go within 4cm of the edge of the screen?
There should be a null word, for the question "Is anybody there?" and to see if microphones are on.
 3.14159265...
 Irrational (?)
 Posts: 2413
 Joined: Thu Jan 18, 2007 12:05 am UTC
 Location: Ajax, Canada
Re: How much of a math nerd are you?
1 > Life > Math > 1
"The best times in life are the ones when you can genuinely add a "Bwa" to your "ha"" Chris Hastings
 BeetlesBane
 Posts: 138
 Joined: Sun Apr 27, 2008 2:32 pm UTC
 Location: Not Chicago
Re: How much of a math nerd are you?
Robin S wrote:Ah, I see. In English "etc." is more standard.Shakleton wrote:I'm sorry but to my defense the direct translation is a very common way of saying you could list sooo much things in addition in Germany.
...
The same construction is used informally in American English. Unlike "etc.", it does indicate the nature of the conjoining.
My own nerd credentials? I memorized a small table of logarithms in high school. I had a collection of slide rules, this included a geared circular slide rule from the late 1800's. I have a graduate degree in math...
Re: How much of a math nerd are you?
someone just sent me a "happy indipendence day" poem that was aired on channel 101. my reply was "happy indipendence day to you too. 101 is prime. hooray for 101! hooray for all primes! hooray for factorials!..."
I went on for three lines describing various types of numbers to congratulate. and all this was sent to a nonmathy person.
I went on for three lines describing various types of numbers to congratulate. and all this was sent to a nonmathy person.
It rains on the enemy too!
 headprogrammingczar
 Posts: 3072
 Joined: Mon Oct 22, 2007 5:28 pm UTC
 Location: Beaming you up
Re: How much of a math nerd are you?
Not so much a math nerd as a logic/compsci nerd, but I try to make people solve this puzzle:
They refer to themselves in the plural third person. Who are they?
They refer to themselves in the plural third person. Who are they?
<quintopia> You're not crazy. you're the goddamn headprogrammingspock!
<Weeks> You're the goddamn headprogrammingspock!
<Cheese> I love you
<Weeks> You're the goddamn headprogrammingspock!
<Cheese> I love you
Re: How much of a math nerd are you?
I tend to use words like "trivially" in everyday conversation. With nonmathematicians. Unintentionally.
I also got so hacked off at the poor level of exposition and rigour given at A Level when talking about matrices (they would literally just prove deep, general theorems for 2x2 and 3x3 matrices only and that by algebraic expansion) that I got hold of a few books and learned linear algebra. That was sort of when I realised I was a mathematician at heart...
I also got so hacked off at the poor level of exposition and rigour given at A Level when talking about matrices (they would literally just prove deep, general theorems for 2x2 and 3x3 matrices only and that by algebraic expansion) that I got hold of a few books and learned linear algebra. That was sort of when I realised I was a mathematician at heart...
This post brought to you by the language C and the number F.
Re: How much of a math nerd are you?
headprogrammingczar wrote:They refer to themselves in the plural third person. Who are they?
You? O_o
What they (mathematicians) define as interesting depends on their particular field of study; mathematical anaylsts find pain and extreme confusion interesting, whereas geometers are interested in beauty.
 BeetlesBane
 Posts: 138
 Joined: Sun Apr 27, 2008 2:32 pm UTC
 Location: Not Chicago
Re: How much of a math nerd are you?
headprogrammingczar wrote:Not so much a math nerd as a logic/compsci nerd, but I try to make people solve this puzzle:
They refer to themselves in the plural third person. Who are they?
Just to display my weirdness credentials I'll answer "a group of clones of G. Julius Caesar."
 Sir_Elderberry
 Posts: 4206
 Joined: Tue Dec 04, 2007 6:50 pm UTC
 Location: Sector ZZ9 Plural Z Alpha
 Contact:
Re: How much of a math nerd are you?
headprogrammingczar wrote:Not so much a math nerd as a logic/compsci nerd, but I try to make people solve this puzzle:
They refer to themselves in the plural third person. Who are they?
Anyone? Just because "you" is a solution that fits, doesn't mean it's the solution. Anyone who refers to themselves in the plural third person would be referred to in the same way.
http://www.geekyhumanist.blogspot.com  Science and the Concerned Voter
Well. You heard him.
Belial wrote:You are the coolest guy that ever cooled.
I reiterate. Coolest. Guy.
Well. You heard him.
Re: How much of a math nerd are you?
Indeed. Another valid answer is "they".
Jerry Bona wrote:The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?
Who is online
Users browsing this forum: No registered users and 8 guests