## How to prove that SU(3) is compact

For the discussion of math. Duh.

Moderators: gmalivuk, Moderators General, Prelates

amit28it
Posts: 17
Joined: Wed Nov 09, 2011 10:26 am UTC
Location: Jaipur
Contact:

### How to prove that SU(3) is compact

How to prove that SU(3) is compact?I have no idea how to do this . And What is the significance of The compactness of SU(3) on the quark model???

jestingrabbit
Factoids are just Datas that haven't grown up yet
Posts: 5942
Joined: Tue Nov 28, 2006 9:50 pm UTC
Location: Sydney

### Re: How to prove that SU(3) is compact

A subset of R^n or C^n is compact if its closed and bounded. So, if you have a Cauchy sequence of matrices in SU(3), is their limit in SU(3)? Is there an upper bound on the entries in an element of SU(3)? If the answer to both of those is yes, then you have a compact group.

ameretrifle wrote:Magic space feudalism is therefore a viable idea.

Talith
Proved the Goldbach Conjecture
Posts: 848
Joined: Sat Nov 29, 2008 1:28 am UTC
Location: Manchester - UK

### Re: How to prove that SU(3) is compact

The continuous image of a compact subset of a topological space is itself compact. Try and find some compact set S in R^n for some n, and some map f:R^n -> M(3,C) where C is the complex numbers. If you restrict this map to S, the map should have SU(3) as its image. From this, it follows that SU(3) is a compact subset of M(3,C).

Hint, it might be easier to think of R^n as being C^m for some m, seeing as the variables in the elements of SU(3) are complex, you can then just associate your map f(x) as f(g(x)) where g is your standard homeomorphism from R^2m to C^m.

amit28it
Posts: 17
Joined: Wed Nov 09, 2011 10:26 am UTC
Location: Jaipur
Contact:

### Re: How to prove that SU(3) is compact

mfb
Posts: 892
Joined: Thu Jan 08, 2009 7:48 pm UTC

### Re: How to prove that SU(3) is compact

My first guess: You cannot do regular quantum field theory if the symmetry group is not compact.

If it is not bounded, you will run into some strange infinities, and if it is not closed, you cannot use it as a symmetry group.
As I said, just a guess and probably wrong in some way.

Talith
Proved the Goldbach Conjecture
Posts: 848
Joined: Sat Nov 29, 2008 1:28 am UTC
Location: Manchester - UK

### Re: How to prove that SU(3) is compact

I suppose it's convenient that compact manifolds can be covered in a finite number of coordinate charts so they have a finite atlas. SU(3) is a compact manifold as a consequence of the construction I hinted to in my last post.

amit28it
Posts: 17
Joined: Wed Nov 09, 2011 10:26 am UTC
Location: Jaipur
Contact:

### Re: How to prove that SU(3) is compact

Can you tell me how SU(3) is a compact manifold in quark field as you have told plzzzz explain it well .

Talith
Proved the Goldbach Conjecture
Posts: 848
Joined: Sat Nov 29, 2008 1:28 am UTC
Location: Manchester - UK

### Re: How to prove that SU(3) is compact

We're not here to do your homework for you. You should have more than enough information in the above thread, on wikipedia and in your course texts.

amit28it
Posts: 17
Joined: Wed Nov 09, 2011 10:26 am UTC
Location: Jaipur
Contact:

### Re: How to prove that SU(3) is compact

Sorry , but i was not clear so i had asked for it .Now I have Computed the sum of the moduli of the elements of the unitary matrix I found it to be 3 . So I guess if the SU(3) matrices are living in R^9 they occupy the Surface of an 8-sphere whose radius is 3. So I conclude that it is bounded in R^9 . Is this right?

Cleverbeans
Posts: 1355
Joined: Wed Mar 26, 2008 1:16 pm UTC

### Re: How to prove that SU(3) is compact

amit28it wrote:Sorry , but i was not clear so i had asked for it .Now I have Computed the sum of the moduli of the elements of the unitary matrix I found it to be 3 . So I guess if the SU(3) matrices are living in R^9 they occupy the Surface of an 8-sphere whose radius is 3. So I conclude that it is bounded in R^9 . Is this right?

If you're using the sum of the moduli as your norm you can conclude it's bounded after your calculation. However these matrices are not in R^9, perhaps you meant living in C^9 (or R^18)?
"Labor is prior to, and independent of, capital. Capital is only the fruit of labor, and could never have existed if labor had not first existed. Labor is the superior of capital, and deserves much the higher consideration." - Abraham Lincoln